首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   0篇
  国内免费   4篇
废物处理   5篇
环保管理   3篇
综合类   9篇
基础理论   26篇
污染及防治   43篇
评价与监测   16篇
社会与环境   9篇
灾害及防治   1篇
  2023年   7篇
  2022年   18篇
  2021年   10篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   11篇
  2016年   4篇
  2015年   7篇
  2014年   3篇
  2013年   11篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1995年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
11.
Due to rapid industrialization and urbanization during last two decades, contamination of soils by heavy metals is on an increase globally. Lands under peri-urban agriculture are the worst affected. In NCT, Delhi about 14.4% of land area is chemically degraded. In order to take care of this problem, recently the Supreme Court of India ordered to shift various non-confirming (about 39,000 units) industries to regions outside NCT, Delhi. However in spite of this, there have been several reports and parliamentary debates on the phyto-toxicity and extensive accumulation of heavy metals in the region. Literature review revealed that the basis of these debates is a few studies on some point locations in/around Delhi. It was further observed that information on the distribution and extent of heavy metal pollution problem in the region was completely missing. The present study was thus basically aimed at assessing the spatial distribution/extent and type of heavy metal pollution in the study area, for enabling future designing of appropriate site-specific management measures by the decision makers.For this, detailed spatial information on bio-available heavy metal concentrations in the soils and surface/sub-surface waters of NCT (Delhi) was generated through actual soil/water surveys, standard laboratory methods and GIS techniques. The study showed that concentration of all micronutrients (viz. Zn: 0.05–0.18 ppm; Cu: in traces; Fe: 0–0.5 ppm; and Mn: 0–1.2 ppm) and most heavy metals (viz. Ni: 0–0.7 ppm; Pb: 0–0.15 ppm and Cd: in traces) in the surface/sub-surface irrigation waters were well within permissible limits. However Cr concentrations in irrigation waters of Alipur and Shahdara blocks were far above their maximum permissible limit of 1 ppm. It was further observed that Ni and Cr concentrations in the drinking waters of almost entire test area were far above maximum permissible levels of 0.02 and 0.01 ppm, respectively. Bio-available concentrations of several heavy metals (viz. Pb: 0.1–2 ppm; Cd: traces; Ni: 0.05–2 ppm and Cr: 0–0.4 ppm) in the study area soils were also observed to be well within the maximum permissible limits. However there were point Cu contaminations (5–10 ppm) in the sewage-sludge amended soils of vegetable growing areas near south Shahdara block. This was attributed to increased Cu availability due to oxidized acidic conditions generated by over-irrigation of agricultural lands. Available Mn concentrations in Kanjhawala, western Najafgarh and Alipur soils were also observed to be above maximum permissible limit of 10 ppm. This was observed to be mainly due to the geology (i.e. presence of Mn rich sedimentary rocks) and prevalence of reduced acidic conditions, due to paddy cultivation, in these areas. It was further observed that there is acute zinc (Zn) deficiency (< 0.6 ppm) in paddy growing soils of north Kanjhawala, Alipur and some parts of Najafgarh and Shahdara blocks due to extensive leaching of available Zn fractions to lower soil horizons. Similar available Zn deficiencies in high pH (8.5) soils of areas around Bamnoli village in E-Najafgarh block were also observed.  相似文献   
12.
Supplementation of paraquat into the culture medium proved to be highly toxic for a blue-green alga Cylindrospermum sp. A concentration of 15 microg/ml proved algicidal for the test alga. Various concentrations (0.5 microg/ml - 15 microg/ml) of the herbicide affected the growth and reduced chlorophyll and phycocyanin contents of the alga. In addition, it inhibited differentiation of heterocysts and akinetes. The inhibition of algal growth was found to be partially relieved on addition of 500 microg/ml of glucose.  相似文献   
13.
14.

Purpose

??-Hexachlorocyclohexane (HCH), ??-HCH, and lindane (??-HCH) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and hence must be phased out and their wastes/stockpiles eliminated. At the last operating lindane manufacturing unit, we conducted a preliminary evaluation of HCH contamination levels in soil and water samples collected around the production area and the vicinity of a major dumpsite to inform the design of processes for an appropriate implementation of the Convention.

Methods

Soil and water samples on and around the production site and a major waste dumpsite were measured for HCH levels.

Results

All soil samples taken at the lindane production facility and dumpsite and in their vicinity were contaminated with an isomer pattern characteristic of HCH production waste. At the dumpsite surface samples contained up to 450?g?kg?1 ?? HCH suggesting that the waste HCH isomers were simply dumped at this location. Ground water in the vicinity and river water was found to be contaminated with 0.2 to 0.4?mg?l?1 of HCH waste isomers. The total quantity of deposited HCH wastes from the lindane production unit was estimated at between 36,000 and 54,000?t.

Conclusions

The contamination levels in ground and river water suggest significant run-off from the dumped HCH wastes and contamination of drinking water resources. The extent of dumping urgently needs to be assessed regarding the risks to human and ecosystem health. A plan for securing the waste isomers needs to be developed and implemented together with a plan for their final elimination. As part of the assessment, any polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) generated during HCH recycling operations need to be monitored.  相似文献   
15.
Eighteen sites impacted by abandoned mine drainage (AMD) in Pennsylvania were sampled and measured for pH, acidity, alkalinity, metal ions, and sulfate. This study compared the accuracy of four acidity calculation methods with measured hot peroxide acidity and identified the most accurate calculation method for each site as a function of pH and sulfate concentration. Method E1 was the sum of proton and acidity based on total metal concentrations; method E2 added alkalinity; method E3 also accounted for aluminum speciation and temperature effects; and method E4 accounted for sulfate speciation. To evaluate errors between measured and predicted acidity, the Nash-Sutcliffe efficiency (NSE), the coefficient of determination (R 2), and the root mean square error to standard deviation ratio (RSR) methods were applied. The error evaluation results show that E1, E2, E3, and E4 sites were most accurate at 0, 9, 4, and 5 of the sites, respectively. Sites where E2 was most accurate had pH greater than 4.0 and less than 400 mg/L of sulfate. Sites where E3 was most accurate had pH greater than 4.0 and sulfate greater than 400 mg/L with two exceptions. Sites where E4 was most accurate had pH less than 4.0 and more than 400 mg/L sulfate with one exception. The results indicate that acidity in AMD-affected streams can be accurately predicted by using pH, alkalinity, sulfate, Fe(II), Mn(II), and Al(III) concentrations in one or more of the identified equations, and that the appropriate equation for prediction can be selected based on pH and sulfate concentration.  相似文献   
16.
Petroleum ether extracts of leaves, stem and inflorescence of Parthenium hysterophorus Linn. at 500, 1000, 2000 and 5000 ppm concentrations were tested in the laboratory for their toxic effects on the mean life span and progeny production of adults of the mustard aphid, Lipaphis erysimi (Kalt.). The investigations revealed a significant decrease in life span and progeny production with treatment. Among the three plant parts tested for their efficacy, the leaf extract showed the most significant effect in causing a dose dependent decline in both the life span and progeny production.  相似文献   
17.
This study deals with the toxicological impact of the herbicide anilofos on photosynthesis, respiration, nitrogen assimilation, and antioxidant system in a diazotrophic rice field cyanobacterium Anabaena torulosa. Treatment of anilofos (1.25, 2.5, and 5?mg?L?1) affected growth, photosynthetic pigments, photosynthesis, and respiration of the cyanobacterium. Although all the photosynthetic pigments were affected, a maximum effect of the herbicide was observed on phycocyanin (51% reduction) followed by the carotenoids. The effect of the herbicide on photosynthetic pigments resulted in 57% decrease in photosynthetic O2 evolution. Studies on the photochemical activity demonstrated that both photosystems (PS I and PS II) were affected by the herbicide. Decrease in the photosynthesis rate resulted in decreased nitrogen assimilation, as revealed by reduced nitrate (20%) and ammonium (26%) uptake and decreased activities of nitrogenase (63% decrease) and glutamine synthetase (22% decrease). This ultimately resulted in the reduced growth of the organism. Activities of superoxide dismutase, catalase, and peroxidase in the presence of anilofos increased by 1.8–3.5 times over control cultures. Proline content increased by 1.6 times, while the content of ascorbate decreased slightly. These results indicate that the organism was able to tolerate the herbicide stress by activating oxidative stress defense mechanism.  相似文献   
18.
Biomaterial industry is a widely growing field that is closely related to advanced materials. With development in fabrication techniques new materials are being created by researchers daily. The currently used biomaterials for biomedical applications have some limitations. This review examines those limitations such as corrosion, short fatigue life, less wear resistance, and inadequate mechanical properties. These limitations may lead to adverse effects. To overcome these limitations carbon-based nanomaterials may be incorporated such that these biomaterials reach the level of ideal biomaterials. Upgrade of biomaterials with graphene and carbon nanotubes (CNTs) needs to be done only after checking the safety profile of these materials. Biocompatibility of functionalized graphene and CNT is found to be adequate for the use in many applications such as drug delivery, biosensing and imaging, cancer therapeutics, and tissue regeneration whereas pristine graphene and CNT may produce adverse effects. The potential of carbon-based nanomaterials and graphene (and its derivatives) in overcoming those limitations and enhancing biological activities of ongoing biomaterials by acting as composites and coating material is examined. In addition, nanomaterials employ new techniques in biomedical application such as cancer therapy for more efficient results.  相似文献   
19.
Journal of Material Cycles and Waste Management - The use of waste plastic as aggregate in cement composites can solve the problem of the disposal of waste plastics in a sustainable way, and it...  相似文献   
20.
Environmental Science and Pollution Research - Induction furnace dust (IFD) is a waste product of the alloy-making process whose disposal by landfill process becomes unsafe due to the presence of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号